
© The Khronos® Group Inc. 2019 - Page 1This work is licensed under a Creative Commons Attribution 4.0 International License

Introducing Timeline Semaphores

James Jones
Principle Software Engineer, NVIDIA



© The Khronos® Group Inc. 2019 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

Current Vulkan Synchronization Model
• Two Coarse-Grained Primitives: VkSemaphore and VkFence

• VkSemaphore: Device->Device Synchronization
- Binary State
- Auto-Reset - 1:1 signal:wait relationship
- Queue operations wait on and signal an arbitrary number of semaphores
- Reusable, but only in the unsignaled state
- Signal must be queued before wait is queued

• VkFence: Device->Host Synchronization
- Binary State
- Manual Reset – 1:<N> signal:wait relationship
- Queue operations signal at most one fence
- Reusable, but only in the unsignaled state



© The Khronos® Group Inc. 2019 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

New Model: Timeline Semaphore Primitive
• From ~10 sync primitives to 1
- Some of these operations not directly expressible with existing sync primitives



© The Khronos® Group Inc. 2019 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

New Model: Timeline Semaphore Primitive
• Combines Device->Device, Device->Host, Host->Device and Host->Host Sync
- Efficient signaling and waiting in any direction



© The Khronos® Group Inc. 2019 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

New Model: Timeline Semaphore Primitive
• 1:<N> Signal:Wait Relationship
- Consume each signal operation in as many waiters as needed, including zero
- No need to reset before reuse



© The Khronos® Group Inc. 2019 - Page 6This work is licensed under a Creative Commons Attribution 4.0 International License

New Model: Timeline Semaphore Primitive
• Wait-Before-Signal
- Begin a Host wait or submit a Device wait before queuing its signal
- Eliminates need for additional interlocks to guard submission/wait order



© The Khronos® Group Inc. 2019 - Page 7This work is licensed under a Creative Commons Attribution 4.0 International License

New Model: Timeline Semaphore Primitive
• Allows Multiple In-Flight Signals and Asynchronous Waits on One Semaphore
- Subsequent signals do not impact existing or future waits on prior signals



© The Khronos® Group Inc. 2019 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

What Is A Vulkan Timeline Semaphore?
• Extends Existing VkSemaphore API
- Supported by all core VkQueue operations that use VkSemaphore objects
- Export and Import across processes or APIs using existing VkSemaphore APIs

• Functional Superset of Both Binary-Type VkSemaphores and VkFence

• 64-bit Monotonically Increasing Counter Replaces Binary VkSemaphore State
- Values can now be descriptive, e.g. a monotonic timestamp, frame count, etc.

• New APIs to Signal and Wait From Host Threads

• Broad OS Support
- Initially Windows 7 through 10, Linux, Android



© The Khronos® Group Inc. 2019 - Page 9This work is licensed under a Creative Commons Attribution 4.0 International License

Remaining Limitations and Compromises
• No Window-System Integration API Support
- vkQueuePresentKHR() and vkAcquireNextImageKHR() not supported
- The OS/Window System infrastructure is not ready everywhere yet
- Several API-semantics issues to work through as well (Input Welcome!)

• Import/Export Not a Required Feature
- Relies on kernel-level support that is not available everywhere yet
- Works on Windows 10+, and Linux/Android devices with newer kernels/drivers

• 64-bit Values, but Sometimes Only 31-bit Range Between Outstanding Operations
- Allows Implementations to hide wrapping when using 32-bit HW or OS primitives
- Still allows use of full 64-bit range if gap between signals and waits is reasonable



© The Khronos® Group Inc. 2019 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

When?
• Aiming to Ship VK_KHR_timeline_semaphore Specification in August
- Windows and Linux implementations ready at launch
- Native Android implementations coming with device updates
- Available via a layer for devices without native driver support



© The Khronos® Group Inc. 2019 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

Questions?

• Thanks to Jason Ekstrand and Lionel Landwerlin at Intel for Leading 
Development of the Spec, CTS, and Layered Implementations.


